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Introduction 
Lack of a definitive system for the diagnosis and staging of NFl-related tumors is a 

major obstacle to investigating the molecular basis of tumorigenesis, to our ability to assess 
prognosis, and consequently, to the rational design and application of stage-specific therapeutic 
agents (1-3). Locus-specific changes in copy number are a common feature of many types of 
tumors, including the neurofibromas and malignant peripheral nerve sheath (MPNST) that 
develop in individuals with NFl (4-13). Gains or losses at a particular locus are potential 
biomarkers for the molecular diagnosis and grading of MPNST. Towards the goal of molecular 
diagnosis and staging of NFl-related tumors, we propose to develop and validate a novel PCR- 
based method, termed QuEST, for rapid and quantitative identification of loci with increases or 
decreases in genomic copy number in MPNST. The specific aims are (1) to develop a series of 
reference and target markers for quantitative assessment of gene copy number. This will involve 
selection, design and optimization of primers and QuEST reactions for reference and target loci. 
(2) to perform QuEST analysis on series of cell lines and MPNST samples for two target regions 
where copy number changes are associated with MPNST formation: amplification of 17q22-qter 
and deletion of Ip. (3) to determine the feasibility of coupling QuEST analysis with laser 
capture microdissection. This study has the potential of providing direct and precise methods to 
use in addressing issues important to diagnosis, treatment, and molecular analysis of MPNST. 

Body 
Research accomplishments associated with each task outlined in the Statement of Work 

are detailed below. We have obtained a one year no-cost extension to complete this project, 
because our timeline was significantly delayed due to the departure of a postdoctoral fellow who 
was working on this project. A new postdoctoral fellow (Dr. Wang) is now focusing on the 
development, optimization, and validation of assays and a new Research Associate (Ms. Vong) is 
implementing those assays on appropriate samples. With these two new professionals, we 
anticipate accelerating the timeline to complete the project within the next year. We made 
significant changes in the methodology of quantitative PCR to increase the sensitivity and 
precision. 

Approved Statement of Work 

Task 1. Design and test a series of primers for analysis of both target loci and reference loci. 
a. Design and synthesize primers for genes in the target regions of chromosomes 

Ip and 17q22-24 and for reference loci. 
b. Optimize the amplification reaction for each locus using non-tumor genomic 

DNA 
Progress: We need the capability and sensitivity to determine if a locus or gene has no 
deletion (2 copies), one gene deletion (1 copy), two gene deletion (0 copies), or 
amplification (likely >10 copies). Two gene deletion and gene amplification are simple 
to detect using various methods of quantitative PCR. The difficulty is in reliably 
differentiating one versus two copies of a gene. Therefore, we have been focusing on 
developing the best assay to detect a one gene deletion. To determine which quantitative 
PCR methods were sensitive, we choose to develop an assay at intron 31 of the NFl 
gene. To validate the assays we used DNA from normal individuals (2 NFl genes) and 
DNA from NFl patients with deletions involving the NFl gene (1 NFl gene). Initially, 
we tried using SYBR green (binds double stranded DNA) fluorescence as a method of ' 
detection during real-time PCR in the LightCycler instrument (Roche). There was 
considerable overlap between the crossing point values (Ct) for samples with one and two 
NFl genes indicating that the assay was not as sensitive or specific as required (data not 
show). Secondly, we sought to increase specificity and sensitivity by using a NFl- 
specific fluorescently-labeled primer. We constructed a LUX primer (Invitrogen), which 



is a hybrid primer comprised of NFl specific sequences and anonymous sequences that 
are capable of fold-back annealing. LUX primers are touted as having high specificity 
because they only fluoresce at high temperatures when the fold backs are melted. We 
had multiple problems with LUX primers and decided to abandon that approach (data not 
shown). The third method we developed was precise, sensitive, and specific and involves 
SYBR green for detection, competitive quantitative PCR, and melting curve analysis as 
detailed below. 

We chose to employ SYBR green for detection in combination with competitive 
PCR, which is the most suitable method of quantification when highly accurate 
determinations are required. We adapted and modified a method published by Ruiz- 
Ponte et al. (14). In this method, a known copy number of a competitor is introduced 
directly in the PCR mixture along with the target DNA of the patient/tumor. The 
competitor, which is almost identical to the target DNA but distinguishable by product 
length, is amplified with the same set of primers so that efficiency of amplification for the 
two amplicons is the same. Calibration curves of different competitor concentrations 
determines the optimal concentration that equals that of the target DNA. Figure 1 shows 
the melting curves of a normal control DNA samples (2 copies of NFl), where 
competitor and intron 31 are co-amplified with equal efficiency and the area under the 
curves are equal (roughly equivalent to peak height in this example).   We constructed 
the competitor such that it would be amplified with the intron 31 primers, but have a 
different melting curve by replacing an internal TTT sequence with a CCC sequence.   As 
expected, negative samples lacking human DNA did not amplify. 

Figure 2 shows the melting curve of a patient with an NFl deletion (1 copy of NFl) 
versus that of the normal control individual. Note that the amplitude of the melting curve 
of the NFl amplicon for the deletion patient is less that of the competitor amplicon 
because there are fewer targets in the deleted patient's DNA. For precision, we use the 
peak areas of each melting curves for quantitation rather than peak height. A ratio of 
peak area of normal control (2 copies) over the peak are of the patient target DNA is 
calculated, see below. 

(see figures on next page) 

Figure 1. Melting curve analysis after competitive, quantitative PCR at NFl intron 31 in 
genomic DNA of a normal control individual. The peaks representing the melting curve 
of the amplicon of the competitor and the amplicon of the patient's target DNA are 
indicated. The negative control without DNA shows evidence of amplificiation. 

Figure 2. Melting curve analysis after competitive, quantitative PCR at NFl intron 31 
can differentiate one gene copy versus two gene copies.   The results of two reactions are 
shown, closed circles represent target DNA from a normal control individual and closed 
squares represent target DNA from an NFl patient with a deletion of one gene. The 
peaks representing the melting curve of the amplicon of the competitor and the amplicon 
of the patient's target DNA are indicated. The negative control without DNA shows 
evidence of amplification. 
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Once the concentration of competitor is determined for a certain concentration of 
the normal control DNA, it is essential that all subsequent reactions with unknown patient 
DNA samples contain exactly the same concentration of target DNA. Prior to the 
competitive quantitative PCR assay, we determine the exact concentration of each patient 
sample using real-time quantitative PCR at a different locus. We amplify the TPA (tissue 
plasminogen activator) gene on chromosome 12 in each patient and compare that to a 
standard curve using the normal control DNA. From this reaction, we can calculate 
exactly what volume of patient DNA must be added to the competitive quantitative PCR 
assay. An example of the TPA real-time PCR and standard curve is shown in Figure 3. 

(see figure 3 on next page) 

Figure 3. LightCycler real-time PCR at TPA locus showing standard curve.   The upper 
panel shows the results of real-time PCR of the TPA locus of a dilution series of a normal control 
individual. The reaction consists of unlabeled primers and uses an internal labeled (fluorescence 
resonance energy transfer (FRET) probe for detection of product. The crossing point (Ct) is 
defined as the fractional cycle at which fluorescence begins to increase exponentially and is 
calculated by the LightCycler. Ct becomes larger as the number of TPA targets decreases. The 
lower panel shows the standard curve calculated from the above data. Note the low error and 
high correlation coefficient. 
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The competitive quantitative gene dosage assay we have developed for intron 31 
of the NFl gene is very precise and shov/s minimal variability. Figures 4 and 5 (see 
legends below and figures on next page) show melting curves for 6 replicates of an NFl 
deletion patient and a normal control individual, respectively.   The data will be analyzed 
as shown in the tables below. First, note the precision of the assay; the standard 
deviations are only 2% and 3% of the means of the assay for normal control individuals 
and deletion patients, respectively. As expected the ratio of NFl competitor peak areas is 
essential 1.0 for samples with two copies of the NFl gene and is 0.5 for samples with one 
copy of the NFl gene. We have screened a large collection of NFl deletion patients and 
normal individuals and found that there is no overlap of ratio values between these two 
populations. 

Therefore, we have developed a sensitive and specific assay that differentiates 
realiably between one versus two copies of a gene. We are now applying this same assay 
to determine it's ability to quantitate amplified loci. 

Replicates of competitive quantitative PCR for intron 33 of NFl 
or normal control individual 

No. Area of 
NFl peak 

Area of 
Competitor 

Peak 

Ratio Mean 
Ratio 

S.D. 

1 3.219 2.957 1.088 
2 3.262 3.296 0.989 
3 3.097 3.255 0.951 
4 3.464 3.26 1.062 
b 3.433 3.278 1.047 
6 3.091 2.918 1.059 

1.033 0.0211 

Replicates of competitive quantitative PCR for intron 33 of NFl 
for deleted patient 

No. Area of 
NFl peak 

Area of 
Competitor 
Peak 

Ratio Mean 
Ratio 

S.D. 

1 1.937 3.85 0.503 
2 2.103 3.68 0.571 
3 1.952 3.755 0.519 
4 2.052 3.356 0.611 
5 1.851 3.665 0.505 
6 1.934 3.33 0.580 

0.548 0.0185 

Figure 4. Melting curves of competitive quantitative PCR at NFl intron 31 
of 6 replicates of an NFl deletion patient. Six curves (color replaced by grey tones for this 
report) are overlaid to demonstrate the precision and lack of variability in replicate samples. 

Figure 5. Melting curves of competitive quantitative PCR at NFl intron 31 
of 6 replicates of a normal control individual. Six curves (color replaced by grey tones for this 
report) are overiaid to demonstrate the precision and lack of variability in replicate samples. 
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Task 2. Perform spectral karyotyping (SKY) of the MPNST- and neuroblastoma-derived cell 
lines. Months 1-12. 

Progress: In collaboration with Dr. Karen Swisshelm, Department of Pathology, 
University of Washington, we have analyzed the karyotype of two of the neuroblastoma-derived 
cell lines. We have performed a routine metaphase G-banded karyotype, which was very 
informative in determining exactly which bands were deleted and or amplified. One line will be 
ideal for analysis of the amplified region of chromosome Ip and the other line for the deleted 
region of 17q22.24. Other regions of amplification and deletion were observed and may be 
targeted later in this project. Because this analysis was so informative, we do not plan to 
perform a SKY analysis unless our PCR results are inconsistent with the karyotype. 

Dr. Stephens performed a comprehensive literature search and compilation of the genetic 
changes in NFl-associated peripheral nerve sheath tumors (see manuscript in Appendix). This 
review revealed that there are consistent regions of the genome that undergo gains and losses in 
MPNST. This review also underscored our choice of the 17q22-q25 region as one of frequent 
gains in chromosomal loci (74%). 

Task 3. Validate the QuEST method by analysis of target and reference loci in DNA from tumor 
cell lines. Months 6-12. 

a. Perform QuEST analysis of genes in the target regions chromosomes Ip and 17q22- 
24 in DNA from MPNST- and neuroblastoma-derived cell lines. We anticipate 
analysis of 4 lines. 

b. Evaluate the results of QuEST compared to the SKY analysis. 
Progress: This analysis is in progress. Now that the competitive quantitative PCR methodology 
has been validated, we are developing and optimizing similar assays for loci that span the Ip and 
17q22-24 regions. Development and ptimization of each assays includes: 

• Choosing primer pairs for loci that are single-copy in the genome. 
• Screening against the appropriate monochromosomal human-rodent hybrid cell line 

to ensure we are not amplifying related loci from other chromosomes 
• Optimizing PCR reaction 
• Developing competitor target DNA 
• Titrating competitor target DNA to determine the concentration equivalent to the 

normal diploid DNA control target 
• Performing real-time PCR at TPA locus for each tumor DNA sample (in reality, we 

will have 5 such loci as controls in case one of them is altered in the tumor sample). 
Determine the concentration to add to the competitive quantitative PCR assay. 

• Performing competitive, quantitative PCR assay 
• Analyzing data 

As stated in the original Statement of Work, tasks 4-6 will be performed in the later period of the 
research project. 

Task 4. Test the QuEST method by analysis of target and reference loci in DNA from tumors. 
This awaits completion of the assays in the tumor cell lines. Anonyous MPNST DNA 

from NFl patients are being collected from collaborators for these future assays. 

11 



Task 5. Determine the sensitivity of the QuEST method. 
This await completion of Task 4. 

Task 6. Couple QuEST with laser capture microdissection of archival MPNST. 
After Dr. Wang has the assays developed and they are being implemented by Ms. Vong, 

he will begin performing laser capture microdissection of archival MPNST at the 
University of Washington Medical Center and assessing the quality of the DNA using the 
TPA assay. When this protocol is optimized, we will apply the assays for deletion of 
17q22-q25 region in MPNST. 

Key Research Accomplishments 

• A comprehensive analysis and summary of genetic changes reported in NFl-associated 
peripheral nerve sheath tumors. These data were reported in a review article by Dr. 
Stephens that is in press (see Reportable Outcomes). 

• Developed a specific and sensitive competitive, quantitative PCR methodology that can 
differentiate one copy from two copies in a genome. 

• Employed real-time PCR of the TPA locus as a means of precise DNA quantification 
• Validated the competitive, quantitative PCR methodology by assay of the NFl locus in 

normal control individuals and NFl deletion patients. 
• Documented the reproducibility of the competitive, quantitative PCR method. 
• Performed and analyzed high-resolution karyotype of the two neuroblastoma-derived cell 

lines that we will be using to validate the competitive, quantitative PCR method for 
analysis of DNA gains and losses in tumor tissue. 

Reportable Outcomes 

• Manuscript: Stephens K. Genetics of Neurofibromatosis 1-associated peripheral nerve 
sheath tumors. Cancer Invest, in press.   (See proofs of article in appendix). 

• Karyotypes of two neuroblastoma-derived cell lines. 
• Development of competitive, quantitative PCR assays for differentiating one versus two 

copies of NFl gene intron 31. 

Conclusions 

Towards the goal of molecular diagnosis and staging of NFl-related tumors, we proposed to 
develop and validate a novel PCR-based method, termed QuEST, for rapid and quantitative 
identification of loci with increases or decreases in genomic copy number in MPNST. We have 
performed a comprehensive literature search and compilation of the genetic changes in NFl- 
associated peripheral nerve sheath tumors. The implications of this analysis are that consistent 
regions of the genome frequently undergo gains and losses in NFl-associated MPNST. This 
phenomenon underscores the validity of our approach and increases the probability that it may be 
of clinical and/or research use. We have developed new assays that are sensitive and specific 
and allow the quantitation of one gene copy versus two gene copies. The method was validated 
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on constitutional DNA using assays that determined the copy number of the NFl gene. This 
methodology will be used for both loss (deletion) of DNA and gain (amplifications) of DNA in 
tumor cell lines and primary tumors. Assays are in development for the target areas of 
chromosome Ip and 17q22-24. The amplification and loss of chromosomal material at these 
regions was confirmed by high resolution karyotyping in two neuroblastoma-derived cell lines 
that will be employed to test the methodology on tumor tissues. We have made significant 
progress in assay design for quantification of genomic losses and gains. Implementation of these 
assays will now test the usefulness of our idea of using QuEST for defining specific losses and 
gains in tumors. 
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INTRODUCTION 

Much of our current understanding of tumorigenesis 
is founded on genetic studies of relatively rare individ- 
uals with inherited disorders that predispose to certain 
cancers, e.g., retinoblastoma"^ and colorectal tu- 
mors.'^'^^ Such genetic studies are consistent with a 
model whereby normal tissues become highly malignant 
due to successive mutation of multiple genes that 
dysregulate cellular proliferation and homeostasis. 
Important classes of mutated genes include oncogenes 
(positive growth regulators), tumor suppressors (nega- 
tive growth regulators), and those encoding cell cycle 
regulators, antiapototic signals, and components of the 
DNA replication and repair machinery. Mutation during 
tumorigenesis can occur at the nucleotide level as 
inactivation of a single gene or at the chromosomal level 
as losses of large segments or entire chromosomes, as a 
fusion of two different chromosomal segments, or as a 
high level amplification of a segment.''*' Screening nor- 
mal and tumor tissues of patients for common genetic 
alterations has been a productive strategy for identifying 
genes that contribute to tumor formation. This article 
focuses on genetic changes commonly associated with 
peripheral nerve sheath tumors in individuals with the 
autosomal dominant tumor-prone disorder neurofibro- 
matosis 1 (NFl). 

Virtually all individuals affected with NFl develop 36 
multiple peripheral nerve sheath tumors. The most com- 37 
mon are neurofibromas, which are benign tumors that 38 
can occur anywhere along the length of epidermal, der- 39 
mal, deep peripheral (including dorsal nerve roots in the 40 
paraspinal area), or cranial nerves. They do not occur in 41 
the brain or the spinal cord proper.'^^ Although benign, 42 
neurofibromas can cause considerable morbidity by, 43 
e.g., infiltrating and functionally impairing normal tis- 44 
sues, causing limb hypertrophy, or masking an emerging 45 
malignancy. Some types of neurofibromas can trans- 46 
form into malignant peripheral nerve sheath tumors 47 
(MPNST),  previously  termed neurofibrosarcoma or 48 
malignant schwannoma. An estimated 20%-50% of 49 
MPNSTs are associated with NFl disease,^^' and they 50 
are a significant cause of the decreased life expectancy 51 
in the NFl patient population.'''^' Recent population- 52 
based longitudinal studies detected an annual incidence 53 
of 1.6/1000 and a lifetime risk of 8%-13% for NFl- 54 
associated MPNST,'^' which is much higher than de- 55 
tected in previous cross-sectional studies""' and over 56 
three orders of magnitude greater than that of the gene- 57 
ral population (^0.001%).'"' Furthermore, NFl-asso- 58 
ciated MPNST were diagnosed at an earlier age than 59 
sporadic tumors (26 vs. 62 years, p < 0.001) and asso- 60 
ciated with a poorer prognosis than sporadic MPNST 61 
(5-year survival of 21 vs. 42%, p = 0.09).'^' 62 
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63 This article reviews the genetic abnormalities that 
64 have been identified at the level of the gene, chro- 
65 mosome, and genome in NFl-associated neurofibromas 
66 and MPNST. Identifying commonly associated genetic 
67 alterations and the mechanisms by which they arise 
68 may potentially lead to markers for tumor staging, to 
69 new research approaches to pathogenesis, and to the 
70 identification of gene targets, which in conjunction 
71 with NFl, will be useful for mouse models. 

72 THE MOLECULAR BASIS OF NFl 

73 The NFl is a common autosomal dominant dis- 
74 order that affects about 1 in 3500 individuals world- 
75 wide. About 30%-50% of cases are sporadic, caused 
76 by de novo mutation in the NFl gene of an individual 
77 without a family history of the disorder. In addition 
78 to predisposing to tumorigenesis, NFl  is associated 
79 with characteristic changes in pigmentation and can be 
80 associated with a wide range of other manifestations 
81 such as learning disabilities and bony abnormalities 
82 (reviewed by Refs. [12-16]). All cases are caused by 
83 mutation of the NFl gene at chromosome 17 band 
84 qll.2, which contains 60 exons that encode the 2818 
85 amino acid protein called neurofibromin.''^"^'^ Neuro- 
86 fibromin is widely expressed, predominantly in the 
87 central   nervous  system   and  sensory  neurons   and 
88 Schwann cells of the peripheral nervous system.'^^'^^^ 
89 One functional  domain  of neurofibromin has been 
90 defined, the GAP-related domain (GRD), so called 
91 because of its structural and functional homology to 
92 mammalian pl20-GAP (GTPase activating protein) and 
93 yeast genes known to regulate the Ras pathway.'^'*'^^^ 
94 The Ras-GAP proteins function as negative regulators 
95 of Ras by catalyzing the conversion of active GTP- 
96 bound Ras to the inactive GDP-bound Ras form.^^^^ In 
97 NFl-associated peripheral nerve sheath tumors, it is 
98 hypothesized that neurofibromin deficiency leads to 
99 increased activated Ras, resulting in aberrant mitogenic 
100 signaling and the consequent growth of a tumor. The 
101 identification of an NFl patient with a missense muta- 
102 tion in the GRD that specifically abolished the Ras- 
103 GAP  activity   of neurofibromin   demonstrated  the 
104 importance of neurofibromin GAP function in NFl 
105 pathogenesis.'^^' In at least some tissues, there is evi- 
106 dence that it is the Ras-GAP activity that accounts for 
107 the tumor suppressor function of neurofibromin. The 
108 most complete evidence comes from genetic and bio- 
109 chemical analyses of NFl-associated malignant mye- 
110 loid disorders.'^^'^'^ The tumor suppressor function of 
111 NFl has been reviewed recently'^^""^^' along with its 
112 potential as a therapeutic target.'^^' 
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The NFl disease is caused by haploinsufficiency for 113 
neurofibromin. The vast majority of NFl mutations are 114 
not in the GRD but are distributed throughout the gene. 115 
Over 80% of mutations inactivate or predict inactivation 116 
of neurofibromin; splicing defects and sequence altera- 117 
tions that create a premature translation termination co- 118 
don are the most common.'^*'^^' About 10% of NFl 119 
mutations are missense,'^^'^^' which are typically clus- 120 
tered in the GRD or an upstream cysteine/serine-rich 121 
domain that may play a role in ATP binding.'^^' Defi- 122 
nitive evidence that neurofibromin haploinsufficiency 123 
underlies NFl came with the identification of NFl whole 124 
gene deletions in an estimated 5%-10% of affected 125 
individuals.'^'''^*' Mutational analyses of patients with 126 
specific features, such as plexiform neurofibroma,'^^' 127 
spinal neurofibroma,''*"' or malignant myeloid disor- 128 
ders,''*" failed to detect any correlation between geno- 129 
type and phenotype. A notable exception is the subset of 130 
patients heterozygous for a microdeletion spanning the 131 
entire NFl gene, who consistently show an early age at 132 
onset of cutaneous neurofibromas (see below). 133 

Virtually all NFl patients develop neurofibromas. 134 
Neurofibromas are comprised of an admixture of large- 135 
ly Schwann cells and fibroblasts, along with mast cells, 136 
endothelial cells, and pericytes.''*^-'*^' Although classi- 137 
fication schemes vary, Friedman and Riccardi'"' define 138 
four types of neurofibromas. Discrete cutaneous neuro- 139 
fibromas of the epidermis or dermis are the most com- 140 
mon, typically appearing near or at puberty and in- 141 
creasing in number to over 100 by the fourth decade of 142 
life.''*^' They are a localized tumor of small nerves in 143 
the skin that feels fleshy and soft; they are more 144 
prevalent on the trunk but also occur frequently on the 145 
face and extremities. Discrete subcutaneous neurofi- 146 
bromas have a spherical or ovoid shape, feel firm or 147 
rubbery, and may be painful or tender. Deep nodular 148 
neurofibromas, also called nodular plexiform neurofi- 149 
bromas, involve major or minor nerves in tissues be- 150 
neath the dermis. On gross pathology, they appear to 151 
grow inside the peripheral nerve, causing a fusiform 152 
enlargement, and may extend the entire length of a 153 
nerve.''*^' Diffuse plexiform neurofibromas have a eel- 154 
Mar composition similar to that of cutaneous neuro- 155 
fibromas, but in contrast, they have a tendency to be- 156 
come locally invasive.'^"''^' Histologically, this tumor is 157 
a tangled network involving multiple nerve fascicles or 158 
branches of major nerves with poorly defined margins 159 
that makes complete surgical resection virtually im- 160 
possible. Plexiform neurofibromas can be superficial 161 
with extensive involvement of underlying tissues, or 162 
they may involve deep tissues, particularly in the era- 163 
niofacial region, paraspinal structures, retroperitoneum, 164 
and gastrointestinal tract.'"' They can infiltrate soft 165 
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166 tissues resulting in localized hypertrophy and signifi- 
167 cant functional impairment. In contrast to other types 
168 of neurofibromas, diffuse plexiform tumors are con- 
169 sidered congenital because they typically become evi- 
170 dent in infancy or childhood and rarely, if ever, in late 
171 adulthood, f'*^-'**^^ In a population-based study, 32% of 
172 individuals with NFl had a plexiform neurofibroma(s) 
173 on physical examination.^*^' Korf'^' recently reviewed 
174 plexiform neurofibromas. 
175 Plexiform neurofibromas, both diffuse and nodular, 
176 are at a greater risk of transforming to an MPNST 
177 than other types  of neurofibromas  (reviewed in 
178 Refs. [5,43,48]). Pathological examination of MPNST 
179 from individuals, both with and without NFl, most often 
180 shows an association with a neurofibroma.^^'"'*'"^'' 
181 These data suggest that an early step in MPNST devel- 
182 opment may be preneoplastic process in the nerve sheath. 
183 Multiple pathological and molecular criteria are used to 
184 evaluate a neurofibroma for malignant transforma- 
185 tion.^'**' Several lines of evidence are consistent with 
186 cutaneous and plexiform neurofibromas and MPNSTs 
187 being clonal tumors that arise from an ancestral Schwann 
188 cell (see below). 

189 
190 

191 

GENETICS OF 
NEUROFIBROMAGENESIS 

Homozygous Inactivation of NFl 

192 Homozygous inactivation of a tumor suppressor 
193 gene(s) is a fundamental mechanism of tumorigenesis. It 
194 occurs by either sequential somatic inactivation of both 
195 alleles or by a somatic mutation in the single normal 
196 homolog in individuals who inherit a germline mutation 
197 in  one  allele.   Somatic  inactivation  is  frequently 
198 associated with loss of heterozygosity (LOH) at the 
199 tumor suppressor locus and at multiple flanking loci 
200 (reviewed in Refs. [52,53]). Evidence for such "2nd 
201 hit" somatic NFl mutations in neurofibromas has been 
202 sought in support of the hypothesis that neurofibromin 
203 functions as a tumor suppressor in Schwann cells. Initial 
204 reports of LOH at NFf^"^^ have been confirmed and 
205 extended by analyses of both primary tumor tissue and 
206 neurofibroma-derived Schwann cells. At least 25% of 
207 neurofibromas undergo LOH at NFlP^'^^^ The cellular 
208 admixture in neurofibromas can mask allelic loss,'^^'^*' 
209 which is the likely explanation for reports that detected 
210 few,  if any,  tumors  with  LOH.'"""'  Compelling 
211 evidence that the somatic inactivation of the NFl gene 
212 itself is important was provided by the identification of a 
213 4 bp deletion in exon 4b in a cutaneous neurofibroma of 
214 a patient with  a germline NFl  microdeletion.'^^' 

Subsequent analyses of cDNA from neurofibromin- 215 
derived Schwann cells showed that 19% of neurofibro- 216 
mas carried somatic intragenic mutations, which were 217 
typically mRNA splicing defects.'^"*' Mutation frequen- 218 
cy may be underrepresented due to the difficulty of 219 
recovering high-quality tumor RNA and the underrep- 220 
resentation of mutant transcripts observed in some 221 
tumors. The latter could be attributed to mutations that 222 
induce nonsense-mediated decay or other mechanisms 223 
that affect mRNA content (reviewed in Ref. [64]) or to 224 
reduced expression for other reasons,^^'*' and/or a low 225 
proportion of mutant to normal Schwann cells in some 226 
tumors. ^^^'^^^ Homozygous inactivation of NFl  also 227 
occurs in plexiform neurofibromas, where an estimated 228 
40% (n = 10) showed LOH,'^^' a result confirmed by 229 
subsequent reports.'^'''^^'^^'^^' 230 

A predominant mechanism of somatic NFl inac- 231 
tivation in neurofibromas that underwent LOH was 232 
mitotic recombination.'^^^ A 17q proximal single mito- 233 
tic recombination event near the centromere of the q 234 
arm between the normal chromosome 17 and the ho- 235 
molog carrying the germline NFl mutation can gene- 236 
rate a cell in which both NFl genes carry the germline 237 
mutation and all loci distal to the recombination site 238 
are identical. Less common were double recombination 239 
events that result in chromosome 17 interstitial loci 240 
showing LOH. The NFl mRNA in some neurofibromas 241 
is edited such that an arginine codon is changed to a 242 
nonsense codon.^^"' Although only one-third of neuro- 243 
fibromas examined showed a low level (<2.5%) of 244 
edited NFl transcripts,^^'' such modulation of neurofi- 245 
bromin expression may be important if, e.g., editing 246 
occurred at high frequency in transcripts from a spe- 247 
cific minor cellular component of the tumor. In other 248 
neurofibromas, somatic mutations appear to destabilize 249 
NFl mRNA.f^^' Transcriptional silencing via hyper- 250 
methylation of promoter regions, a prominent mecha- 251 
nism of inactivating other tumor suppressor genes,'^^' 252 
has not been detected in neurofibroma tissue.'^^'^*' As 253 
expected from the mutational and LOH analyses, some 254 
neurofibromas had no detectable NFl transcripts or 255 
neurofibromin.'^^'^^' A quantitative Ras activity assay 256 
demonstrated that activated Ras-GTP levels were about 257 
fourfold higher in neurofibromas than levels in non- 258 
NFl-associated schwannomas.'^^'^^' 259 

Neurofibromas are most likely clonal tumors de- 260 
rived from a Schwann cell progenitor. The detection of 261 
LOH in a tumor operationally defines it as being clonal in 262 
origin, and these data are consistent with direct marker 263 
analyses in neurofibromas.^^'''^'' The LOH or other 264 
somatic mechanisms that inactivate NFl in a Schwann 265 
cell progenitor may be an early or initiating genetic event 266 
in neurofibromagenesis. Klewe and colleagues showed 267 
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310 
311 

268 LOH in primary neurofibroma tissue and in tumor- 
269 derived Schwann cells but not fibroblastsJ^*^ Other in- 
270 vestigators confirmed this observation/^^'**' Two genet- 
271 ically distinct Schwann cell populations, NF1*'~ and 
272 NF1~'~, were successfully cultured from 10 mutation- 
273 characterized neurofibromas, whereas tumor-derived 
274 fibroblasts carried only the germline NFl*'" geno- 
275 typeJ*^' Sherman et al.'^^' used an elegant single cell 
276 Ras-GTP assay to show elevated levels in neurofibroma- 
277 derived Schwann cells but not fibroblasts. Consistent 
278 with two Schwann cell populations, only a fraction 
279 (12%-62%) of neurofibroma-derived Schwann cells had 
280 elevated Ras-GTP levels. The basis of the Schwann cell 
281 heterogeneity is not known, but the authors speculate that 
282 the cells with high Ras-GTP (presumably neurofibromin- 
283 deficient) may recruit Schwann cells with lower Ras- 
284 GTP levels (presumably the constitutional neurofibro- 
285 min-haploinsufficient cells) via the synthesis of growth 
286 factors. Whether this admixture of Schwann cells is 
287 important in tumorigenesis remains to be determined; 
288 however, its observation in primary neurofibroma tissues 
289 makes it more likely. Fluorescence in situ hybridization 
290 and immunohistochemistry demonstrated that S-100 
291 protein (Schwann cell marker) immunopositive cells in 
292 sections of four of seven primary plexiform neurofibro- 
293 mas were monosomic for NFlP°^  Because other 
294 cells types were disomic at NFl, these results strongly 
295 implicate the Schwann cell as the target of the NFl 2nd 
296 hit mutation and verify that the results from neurofibro- 
297 ma-derived Schwann cells were not biased by cell 
298 culture. These data also support Schwann cell genetic 
299 heterogeneity, because the fraction of S-100 protein 
300 positive cells showing NFl deletion ranged from 50%- 
301 93%. Further evidence for the importance of Schwann 
302 cells in neurofibromagenesis comes from the tumor- 
303 igenic properties exhibited by neurofibroma-derived 
304 cells.'*'"*'*' In the most comprehensive studies, Muir 
305 and colleagues'*'''*'" showed that neurofibromin-defi- 
306 cient Schwann cells, derived from either dermal or 
307 plexiform neurofibromas, had high invasive potential 
308 and produce neurofibroma-like tumors when engrafted 
309 into peripheral nerves of scid mice. 

Germline Alterations That May 
Modify Neurofibromagenesis 

312 The  considerable  variable  expressivity  of NFl 
313 disease among family members with presumably the 
314 same NFl mutation and results of a statistical trait 
315 analysis led to the contention that variation in an 
316 individual's  genetic  background  modified  the  NFl 
317 phenotype.''**'*^' To date, no such germline modifying 
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genes have been identified. However, the study of 318 
patients  carrying NFl   microdeletions  has provided 319 
compelling evidence for a gene that modifies neurofi- 320 
bromagenesis. We first recognized that NFl micro- 321 
deletion patients typically showed an early age at onset 322 
of localized cutaneous neurofibromas or, in cases in 323 
which age at onset could not be documented, they had 324 
significantly greater numbers of cutaneous neurofibro- 325 
mas relative to their age.'^*'**' It is common to observe 326 
multiple  cutaneous   neurofibromas  during  physical 327 
examination  of children   under  age   10  that  are 328 
heterozygous for an NFl microdeletion,'^*'*'''**' where- 329 
as only about 10% in the general NFl population have 330 
a tumor(s) by that age.''*'' In our most severe case, a 5 331 
year old  with  an  NFl  microdeletion  had  51-100 332 
tumors.'^*' The NFl microdeletions can be inherited 333 
from an affected parent, and in these cases, the micro- 334 
deletion cosegregated with the early age at onset of 335 
neurofibromas.'**'*^'   Other  investigators  have  con- 336 
firmed the early onset and heavy burden of cutaneous 337 
neurofibromas in NFl microdeletion patients, and over 338 
50 such patients have been identified."""'*' 339 

Most NFl microdeletions span 1.5 MB of DNA,'*'" 340 
which harbors the entire 350 kb NFl gene and at least 341 
11 additional genes, most of unknown function.'*''''' 342 
The microdeletions are preferentially maternal in ori- 343 
gjjj[87,9i,93,ioo,ioi] gjj^ ^gg ^y homologous recombina- 344 

tion between  60  kb  misaligned paralogs  (termed 345 
NFIREP) that flank the NFl gene.'*'" Paralogs are 346 
nonallelic DNA sequences with a high degree of identity 347 
that arose via duplication, e.g., the two functional oc 348 
globin genes. Over 25 human disorders are known to be 349 
caused by gene or chromosomal rearrangements medi- 350 
ated by homologous recombination between paralogs, a 351 
process correctly referred to as nonallelic homologous 352 
recombination  in  the  review by  Stankiewicz and 353 
Lupski.""^' Here, I propose that this process be called 354 
by the less awkward term of paralogous recombination 355 
and that disorders arising by this mechanism be called 356 
paralogous recombination disorders, rather than the cur- 357 
rently used genomic disorders. Although the NFlREPs 358 
share >95% sequence identity over 60 kb of sequence, 359 
about 80% of the NFl deletion alleles are virtually 360 
identical because their breakpoints map to one of either 361 
two recombination hotspots of several kb in size located 362 
within the NF1REP"°^' (M. Dorschner et al., in pre- 363 
paration).  Although the molecular basis for these 364 
hotspots is not yet known, their existence means that 365 
the majority of microdeletion patients will be deleted 366 
for the same set of genes. The early age at onset of 367 
cutaneous  neurofibromas  observed  in  several  pa- 368 
tients with larger deletions and/or different breakpoints 369 



120025093 CNV 21 06 R1 081803 

Genetics of Neurofibromatosis 1 905 

370 indicates that generation of a deletion-specific fusion 
371 gene product is unlikely.'^'' 
372 We hypothesized that the codeletion of NFl and 
373 an unknown linked gene potentiates cutaneous neurofi- 
374 bromagenesisJ''^'*''^ What might be the function of the 
375 putative neurofibromagenesis-potentiating locus (NPL)1 
376 Here I propose two models for the early age at onset 
377 of cutaneous neurofibromas in microdeletion patients. 
378 Haploinsufficiency for NPL could increase the fre- 
379 quency of somatic 2nd hit mutations in the NFl gene. 
380 This  could  result  from   a  genomic   instability  in 
381 microdeletion patients, which is intriguing in view of 
382 reports detecting cytogenetic abnormalities and micro- 
383 satellite instability in some neurofibromas (see below). 
384 It would be interesting to determine if somatic NFl 
385 mutations in cutaneous neurofibromas of microdeletion 
386 patients occur by a predominant mechanism. Only a 
387 single tumor from each of two deletion patients have 
388 been analyzed; one had a 4 bp intragenic deletion^*^^' 
389 and the other a splice site.^^^' A second model for early 
390 onset of cutaneous neurofibromas proposes that NPL 
391 haploinsufficiency   increases   the   probability   that  a 
392 neurofibromin-deficient  progenitor  cell  proliferates 
393 and manifests as a neurofibroma. Multiple mechanisms 
394 could be proposed. For example, NPL could encode 
395 (or regulate) a cytokine, cell cycle regulator, tumor 
396 suppressor, or oncogene, which exerts a positive pro- 
397 liferative advantage on the progenitor cell. Because of 
398 the cellular heterogeneity of neurofibromas, this model 
399 does not necessarily require that the abnormal expres- 
400 sion of NPL or its putative downstream targets occur in 
401 the neurofibromin-deficient Schwann clone. 
402 Preliminary, but intriguing evidence suggests that 
403 genetic  background,   other  than  NFl   microdeletion, 
404 may  influence the  somatic  inactivation  of NFl.  In 
405 patients with multiple neurofibromas, it was deter- 
406 mined that each of the tumors showed the same type of 
407 somatic mutation event (e.g., LOH of the entire q arm 
408 or interstitial LOH).^^*^ Depending on the extent of 
409 LOH and the particular genes involved, this could 
410 explain differences in the age at onset and/or numbers 
411 of neurofibromas that develop in an individual. 

412 
413 

Somatic Alterations That May 
Modify Neurofibromagesis 

414 The  NFl-associated  neurofibromas  have  been 
415 analyzed for genetic abnormalities at the chromosomal 
416 level by comparative genome hybridization (CGH) and 
417 cytogenetic analyses. Comparative genome hybridiza- 
418 tion is a powerful technique to detect and map chromo- 
419 somal regions with copy number imbalances in tumor 

specimens (reviewed in Ref. [104]). Only two of eight 420 
neurofibromas (type not specified) examined showed 421 
chromosomal  imbalances;  one  tumor showed three 422 
gains; the other only a single gain.''"'''"^' This obser- 423 
vation is consistent with cytogenetic studies. Although 424 
Schwann cell cultures from dermal neurofibromas had 425 
normal karyotypes, cells derived from plexiform neuro- 426 
fibromas had abnormalities, which in some tumors 427 
consisted  of unrelated  non-clonal  abnormalities.""^^ 428 
One plexiform had structural abnormalities predomi- 429 
nantly involving telomeres, which are typically associ- 430 
ated  with  genomic  instability  in  other syndromes/ 431 
tumors.''°^^ Wallace et al. proposed that chromosomal 432 
abnormalities might be important in the development 433 
of plexiform neurofibromas. Chromosomal abnormali- 434 
ties in plexiform neurofibromas may account, at least 435 
in part, for their increased risk of malignant transfor- 436 
mation. Whether other cellular components of neurofi- 437 
bromas   show  cytogenetic   abnormalities  is  unclear. 438 
Some  neurofibroma  fibroblast-like  derived  cultures 439 
were reported to show an increased frequency of chro- 440 
mosomal aberrations,"°*' whereas others were typically 441 
negative.''"'^ 442 

Conflicting data have been reported regarding the 443 
presence of microsatellite instability in NFl-associated 444 
neurofibromas.   Some  human  tumors,  most  notably 445 
those of patients with hereditary nonpolyposis colon 446 
cancer HNPCC, show microsatellite instability, which 447 
is  detected  by  random  changes  in  the  length  of 448 
microsatellite (simple nucleotide repeats) loci. Length 449 
mutations at multiple microsatellite loci in a tumor 450 
reflect a genome-wide instability, which in the case of 451 
HNPCC is due to a defect in any of several mismatch 452 
repair genes (reviewed in Ref. [2]). Ottini et al."'°^ 453 
reported that 50% (n = 16) of neurofibromas showed 454 
altered allele lengths compared with matched normal 455 
tissue, and instability at chromosome 9 loci has also 456 
been  reported.'-'''^   Birindelli   et  al.'"^'   observed 457 
instability in a primary MPNST and a metastasis in 458 
one of 25 cases. However, no evidence of instability 459 
was detected in two subsequent studies of 80 neuro- 460 
fibromas, of which 5% appear to be of the plexiform 461 
type [55,73] This disparity may be due to technical dif-    462 
ferences, the number and type of microsatellite loci 463 
examined, and/or the stage of the neurofibromas. The 464 
LOH at NFl was not a factor, because all three studies 465 
analyzed neurofibromas that were both positive and 466 
negative. Of the eight neurofibromas with microsatel- 467 
lite instability, seven were unstable at only one of the 468 
five loci tested."'"' Due to the important implications 469 
that microsatellite instability would have for neurofi- 470 
bromagenesis, additional loci should be examined in 471 
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these tumors, including those analyzed by the other 
investigators. In addition, it would be interesting to 
know if the neurofibromas that showed microsatellite 
instability were of the larger, central plexiform type, in 
which case they may have been transforming to malig- 
nancy. The proportion of loci that display instability 
is known to increase with tumor progression in 
HNPCC.'"^! 

GENETICS OF MPNST 
DEVELOPMENT 

Homozygous Inactivation at NFl 

The homozygous inactivation of NFl in NFl- 
associated MPNST, first reported by Skuse et al.,'^"^ 
has been confirmed in about 50% of tumors (n = 22) by 
LOH.[67.i09,i 12,114.115] Mutations in both NFl alleles 
have been identified in a single MPNST.^"*' Although 
the mechanism of LOH is not known, it does not 
generally involve cytogenetically detectable losses at 
17ql.'"^^ Furthermore, NFl-associated MPNST-derived 
cell lines showed decreased or absent neurofibromin and 
high levels of active Ras-GTP,'"'-"^' and a quantitative 
Ras activity assay demonstrated that activated Ras-GTP 
levels in tumors were about 15-fold higher than levels in 
non-NFl-associated schwannomas.'^^' Because homo- 
zygous inactivation of NFl occurs in benign neurofi- 
bromas, it is considered an early or initiating event that is 
necessary and sufficient for neurofibromagenesis but not 
MPNST development. Malignant transformation is 
presumably driven by predisposing genetic factors in 
the germline and/or by additional somatic mutations and 
positive growth selection in a malignant precursor cell. 
The role of A^F7 in the development of sporadic MPNST 
is not clear; only about 10% of these tumors show LOH 
at NFly'^^ 

Germline Alterations That May 
Modify MPNST Development 

Little is knovvn about germline genetic modifiers 
that predispose to MPNST. Early speculation that 
patients with NFl microdeletion may be at increased 
risk for malignancy^''^' is now supported by indirect 
evidence. Mutational analysis of germline DNA from 
seven patients who developed MPNST determined that 
three (42%) were heterozygous for an NFl microdele- 
tion.f"^' In another study, 2 of 17 (11%) unrelated NFl 
microdeletion patients developed MPNST, and affected 
first-degree relatives of two microdeletion patients had 
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Other malignancies, f*'^ Although additional cases are 518 
needed, these data suggest that the lifetime risk of 519 
MPNST in microdeletion patients  may  exceed the 520 
already high 10% in the general NFl population.^'' If 521 
so, the underlying mechanism may be essentially the 522 
same as that proposed above for early onset neurofi- 523 
bromagenesis. Deletion of the putative NPL gene could 524 
result in genomic instability or exert positive growth 525 
selection for the malignant clone. If microdeletions 526 
do predispose to both cutaneous neurofibromas and 527 
MPNST, it seems reasonable to speculate that in at least 528 
this subset of patients, either the discrete cutaneous 529 
type of neurofibroma is at increased risk of malignant 530 
transformation or the frequency of nodular or diffuse 531 
plexiform neurofibromas is high. 532 

Evidence from two families suggests the intriguing 533 
possibility that MLHl deficiency predisposes to NFl 534 
and early onset extracolonic tumors.''^''•'^'' Germline 535 
heterozygous inactivating mutations in MLHl cause 536 
inefficient DNA mismatch repair, with the consequent 537 
increase in mutation frequency and susceptibility to 538 
hereditary nonpolyposis colorectal cancer (reviewed in 539 
Ref. [122]). Two rare and independent cases of con- 540 
sanguineous marriages between MLHl heterozygous 541 
first cousins each produced two children with NFl 542 
disease and hematological malignancies."^"''^" The 543 
parents had no signs of NFl and there was no family 544 
history of the disease. The MLHl  mutations were 545 
identified, confirming homozygosity in three of the 546 
four deceased children, who presented with mutiple 547 
cafe au lait spots (4/4), dermal neurofibromas (2/4), 548 
tibial pseudoarthrosis (1/4), non-Hodgkin's lymphoma 549 
(2/4), myeloid leukemia (2/4), and meduUoblastoma 550 
(1/4). The authors suggest that these patients had a de 551 
novo postzygotic NFl mutation and that the NFl gene 552 
may be preferentially susceptible to mismatch repair 553 
deficiency.  Unfortunately,   the  NFl  gene  was  not 554 
analyzed for mutations, due in part to lack of patient 555 
tissue,''^"' which could have confirmed mutation of 556 
NFl and differentiated between postzygotic mutation 557 
and germline mosaicism in a parent. 558 

Somatic Alterations in 559 
NFl-Associated MPNST 560 

All NFl-associated MPNST showed significant 561 
chromosomal imbalances by CGH."°^''°^''^^''^'*' Anal- 562 
ysis of 27 total tumors from 19 NFl patients showed an 563 
average of >7 imbalances per MPNST (Table 1). One 564 Tl 
tumor had only a single imbalance, a gain of chro- 565 
mosome 8."^^' The studies led by Mechtersheimer and 566 
Schmidt,'^°^''°^' which include 74% of tumors exam- 567 
ined, detected chromosomal gains more frequently than 568 
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Tl.l 

T1.2 

T1.3 

T1.4 
T1.5 
T1.6 
T1.7 
T1.8 
T1.9 
Tl.lO 
Tl.ll 
T1.12 
T1.13 

Table 1.    Chromosomal gains and losses in MPNST detected by CGH. 

NFl-associated MPNST 

Loethe^ Mechtersheimer"' 

No. tumors/No. patients 7/7 
Imbalances 52 

Per tumor 7.4 
Range 1-17 

Chromosome gains 14 
Per tumor 2 
Range 0-3 

Chromosome losses 38 
Per tumor 5.4 
Range 0-14 

a: Ref. [123]. 
b: Ref. [105]. 
c: Ref [106]. 

6/6 
77 
11.7 
6-30 
48 
8.0 
4-18 
29 
4.8 
1-12 

Schmidt'' Loethe^ 

14/6 3/3 
188 14 
13.4 4.6 
7-29 1-7 
139 4 
10.0 1.3 
5-20 0-2 
49 10 
3.5 3.3 
0-11 1-4 

Sporadic MPNST 

Mechtersheimer 

13/13 
176 
13.5 
0-34 
125 
9.6 
0-23 
51 
3.9 
0-11 

907 

Schmidt" 

22/20 
200 
9.1 
0-25 
179 
8.1 
0-21 
33 
1.5 
0-9 

569 
570 
571 
572 
573 
574 
575 

T2 576 
577 
578 
579 
580 

losses (Table 1). Each of the 20 tumors in these studies 
had >4 chromosomal gains. Although the results of 
these two studies were comparable, they differed 
from a third study that found chromosomal losses 
more prevalent than gains.^'^^^ The reason for the dis- 
parity is unclear; however it was also evident in the 
analyses of sporadic MPNST in each study (Table 1). 
Table 2 summarizes the chromosomal segments that 
most frequently showed gains in NFl-associated 
MPNST. The most common segments were on 17q22- 
q24, 17q25, 7pl4, 7p21, 8q22, 8q23-q24, and 7q31. 
Chromosomal loss of these segments was rarely, if ever, 

observed.""^''"^-'^^^ A combined analysis of sporadic 581 
and NFl-associated MPNST revealed a significantly 582 
decreased survival rate of patients with MPNST with 583 
gains at both 7pl5-21 and 17q22-qter."^'*^ 584 

In addition to chromosomal gains, CGH analyses 585 
also  revealed  large-scale  chromosomal  amplifica- 586 
tions."°''"'^''^l One-third of MPNST of both NFl and 587 
non-NFl patients had at least one amplified chromo- 588 
somal segment (Table 3). Although the number of 589 T3 
tumors is small, there are differences in amplification 590 
patterns. In NFl-associated MPNST 7p and 17q22-qter, 591 
the same regions that commonly showed chromosomal 592 

T2.1 

T2.2 

T2.3 

Table 2.    Frequency of chromosomal gains in NFl-associated MPNST. 

T2.4     No. MPNST/No. patients 

T2.5 Chromosome 
T2.6 lq33 
T2.7 5pl5 
T2.8 7pl4 
T2.9 7p21 
T2.10 7q31 
T2.11 8q22 
T2.12 8q23-q24 
T2.13 15q24-q25 
T2.14 17q22-q24 
T2.15 17q25 

a: Refs. [105,123]. 
b: Ref. [105]. 
c: Ref. [106]. 

Loethe" 

7/7 

0 
28 
28 
28 
28 
28 
14 
0 

42 
71 

% MPNST 

Mechtersheimer'' 

6/6 

50 
50 
83 
50 
33 
33 
33 
17 
83 
83 

Schmidt"^ 

14/6 

50 
35 
71 
64 
64 
64 
85 
71 
85 
78 

Total 

27/19 

37 
37 
63 
52 
48 
48 
55 
41 
74 
78 
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593 gains (Table 1) were amplified frequently. The fre- 
594 quency of 7p amplifications may be overestimated 
595 because these four MPNST (considered as different 
596 primary tumors) were from a single patientJ'"^"'^'*' In 
597 contrast, amplifications of 5p, 8q, and 12q were the most 
598 prevalent in sporadic MPNST. There was a significant 
599 difference in the frequency of tumors with more than 
600 one chromosomal segment amplified. Only  10% of 
601 NFl-associated MPNST had more than one amplified 
602 segment, whereas the frequency was 72% in sporadic 
603 tumors (Table  3).  Differences in the location  and 

number of chromosomal  segments amplified were 604 
unlikely to be due to tumor grade, because the majority 605 
of MPNST, 14 of 20 (70%) of NFl-associated and 22 of 606 
34 (64%) of sporadic, were grade 3 (poorly differentiat- 607 
ed). Although amplifications were more frequent in NFl- 608 
associated than sporadic MPNST (50% vs. 32%), the 609 
number of NFl-associated tumors may be overestimated 610 
because it includes multiple tumors from the same 611 
patient. Adjustment for one tumor/patient gives a 612 
frequency of 25% (5 of 20) for NFl-associated MPNST. 613 
Similarly, there was no correlation between chromosomal 614 

T3.1 Table 3.    Large-scale chromosomal amplifications in MPNST." 

T3.2     Chromosome segment amplified No. NFl-associated MPNST'' (N = 20)        No. sporadic MPNST" (N = 34) 

T3.3     4ql2-ql3 
T3.4     5pll-pl5 
T3.5     5pl4 
T3.6     5pl5 
T3.7     5pl3-pter 
T3.8     7pl4-pter 2" 
T3.9     7pl3-pter 1" 
T3.10   7pl2-pter 1" 
T3.11   7pll-pl2 
T3.12   8ql2-qter 
T3.13   8ql3 
T3.14   8q21-q22 
T3.15   8q22-q23 
T3.16   8q24 
T3.17   8q23-qter 1 
T3.18   9p21-p23 1"= 
T3.19   9q3I-q33 
T3.20   12pl2 1= 
T3.21   12pl3 
T3.22   12ql3-ql4 
T3.23   12ql4-q21 
T3.24   12q24 
T3.25   13ql3-q33 
T3.26   13q32-q33 
T3.27   17pll-pl2 
T3.28   17q24-qter 2 
T3.29   17q22-q24 1 
T3.30   20ql2-qter 
T3.31   Xpll 
T3.32   Xp21-p22 
T3.33   Summary 
T3.34   % tumors with an amplification 50 (10/20) 
T3.35   % tumors with >1 amplified segment 0.1 (1/10) 
T3.36   % patients with > 1 tumor with an amplification 30 (4/12) 

32(11/34) 
72 (8/11) 
32(11/34) 

a: Centromeric regions, chromosomes 19 and Y, and Ip32-p36 were not scored for technical reasons. (From Ref [105].) 
b: Refs. [105,106,124]. 
c: Refs. [105,124]. 
d: Four of five primary MPNST from one patient. (From Ref. [106].) 
e: Two of four primary MPNST from one patient. (From Ref [106].) 
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615 amplification and progression to metastasis. Analysis of 
616 tissue from a primary tumor, recurrence, and metastasis 
617 from a single patient showed a single amplification 
618 (8ql2-qter) in the recurrent tumor.''^'*^ 
619 Comparison of the chromosomal losses detected in 
620 the three CGH studies revealed the following five most 
621 frequent losses in 27 NFl-associated MPNST: 13q21- 
622 22 (12/27), llq23-25 (10/27), lp22-31 (9/27), 3qll-21 
623 (8/27), and 17pl2-pter (7/27).["'5-'°fi''"] It is of interest 
624 that the loss of 17pl2-pter was detected in 50% (7 of 
625 14) tumors in one study^'°^^ and in none of the tumors 
626 of the other studies. The relatively low detection rate of 
627 chromosomal  losses  may  be  due  to the decreased 
628 sensitivity of CGH in polyploid MPNST.^'^^' 
629 The CGH analysis of multiple, presumably syn- 
630 chronous or metachronus, primary MPNST at different 
631 sites in three NFl   patients revealed a remarkable 
632 similarity in chromosomal gains and losses.^'°^''^'*^ For 
633 example, five grade 3 (poorly differentiated) tumors of 
634 one patient each showed imbalances of +7p, — 13q21, 
635 and +17q22-qter. These data showed that in the speci- 
636 fie genetic background of each patient, a relatively 
637 limited, and defined, number of rearrangements were 
638 shared among the tumors. Similarly, nearly identical 
639 aberrations were found in different MPNST from the 
640 same patient."^^^ Although limited, these data suggest 
641 that each individual's constitutional genotype sets a 
642 certain "baseline" on which a minimal and limited 
643 number of genetic alterations are necessary and suf- 
644 ficient for MPNST development. 
645 Consistent with CGH analysis, the karyotype of 
646 NFl-associated MPNST-derived cells are complex with 
647 chromosomal numbers ranging from 34 to 270 indica- 
648 tive of hypodiploidy, hypotriploidy, hypotetraploidy, hy- 
649 pertriploidy, and hypertetraploidy (Refs. [109,116,125] 
650 and references therein). Although breakpoints were fre- 
651 quent, a common specific breakpoint was not detected. 
652 A comparison of CGH and karyotying in six MPNST 
653 revealed significant overlap in the most frequent gains 
654 and detected losses at 19q (3 of 6 tumors), a region not 
655 analyzed in the CGH studies.'"'^''^^^ Plaat et al.'"^' 
656 performed a computer-assisted cytogenetic analysis of 
657 46 MPNST reported in the literature and 7 new cases of 
658 both NFl-associated and sporadic tumors (Ref. [116] 
659 and references therein). These studies confirmed the 
660 CGH observation of high-frequency gains at chromo- 
661 somes 7p and 7q and losses at Ip and 17p. However, 
662 their reported cytogenetic differences between NFl- 
663 associated and sporadic MPNST'"®' were not con- 
664 firmed in later studies.'^^^"'^®' In one study, near triploid 
665 or near tetraploid clones were associated with grade 3 
666 tumors and a poor prognosis."^®' The detection of a 
667 t(X;18) translocation in MPNST''^''' was not confirmed 
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in either sporadic'^^*' or NFl-associated neurofibroma 668 
or MPNST.f'^^' 669 

Inactivating mutations in several tumor suppressor 670 
genes have been identified in NFl-associated MPNST. 671 
Both LOH and intragenic missense mutations of 672 
7Pjj[50,62,i 12,130] jjgyg ^^ggjj detected. Like many sarco- 673 

mas, NFl-associated MPNST often showed overexpres- 674 
sion of p53 (the protein product of the TP53 gene) as 675 
assayed by immunoreactive positivity in the nucle- 676 
^j [50,112,131,132] jjj i^eepiug ^itjj findings in other tumors, 677 
this most likely is mutant p53 protein, which accumulates 678 
due to its increased stability. Mutant protein is thought to 679 
promote cancer by either complexing with and seques- 680 
tering functional p53 or by complexing with p63 and p73 681 
and blocking their normal transcription factor activities 682 
(reviewed in Ref. [133]). Immunohistochemical detec- 683 
tion of p53 was more common in NFl-associated vs. 684 
sporadic MPNST, and it was associated with poor 685 
prognosis in NFl children.'"^' About 50% of NFl- 686 
associated MPNST showed homozygous deletion for 687 
exon 2 of the INK4A  gene, and over 90% were 688 
immunonegative for its protein product pl6.'"^''^'*''^^' 689 
Homozygous deletion of exon 2 results in deficiency for 690 
both pi6 and pM'^^^  two proteins encoded by 691 
alternative splicing of INK4A (also known as CDKN2A). 692 
Both of these proteins are tumor suppressors that 693 
modulate activities of the RB and p53 pathways, which 694 
are critical for cell cycle control and tumor surveillance 695 
(reviewed in Ref. [136]). MXIl mutations in regions that 696 
encode known functional domains have been detected in 697 
the two NFl-associated MPNST analyzed.'"''^ Mxil is 698 
an agonist of the oncoprotein Myc and is thought to limit 699 
cell proliferation and help maintain the differentiated 700 
state (reviewed in Ref.  [138]). Mxj7-deficient mice 701 
develop tumors, and Mxil deficiency decreases the 702 
latency of tumors that arise in Ink4a-deficient mice.''^*' 703 
If additional studies show that somatic inactivation of 704 
MXIl is common, it would suggest a link between the 705 
pathways of Ink4a, Myc, and Ras in NFl-associated 706 
MPNST.f'^"-"^" 707 

Several  differences  observed  in  NFl-associated 708 
MPNST are likely involved in the malignant transfer- 709 
mation of a preexisting neurofibroma. TP53 or INK4A 710 
mutations/altered  expression  were  not' detected  in 711 
neurofibromas.f^°'5'-^*'®^'®^-®^-"2.i32,i34,i35]   p^^^^^^^, ^^^ 

more, p53-positive nuclei, typically associated with 713 
MPNST, were observed in a few cells at the transitional 714 
zone between an existing plexiform neurofibroma and 715 
an arising MPNST.'^'^ One plexiform neurofibroma 716 
proximal to an MPNST did show pl6 immunonegativ- 717 
ity.'"^' Microdissection of a preexisting neurofibroma 718 
from its MPNST focal malignant process revealed 5 719 
chromosomal imbalances in the neurofibroma, all of 720 
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721 which were novel compared to the 10 imbalances in the 
722 MPNST componentJ'"*^ These data are consistent with 
723 a restructuring of the genome during transformation. 
724 An additional distinguishing feature of MPNST is the 
725 high labeling index of the nuclear proliferating antigen 
726 Ki67, which was correlated with reduced survival in a 
727 study  that  combined  NFl-associated  and  sporadic 
728 MPNST.'^'-'^2,i42] 

729 
730 
731 

OTHER NFl-ASSOCIATED 
NEOPLASMS AND 
MOUSE MODELS 

Stephens 

cells. This mouse model demonstrates that neurofibro- 771 
min  deficiency  in  Schwann  cells  is  sufficient  for 772 
generating nascent tumor lesions, but frank plexiform 773 
neurofibroma  development  requires  neurofibromin 774 
haploinsufficiency in cells of the surrounding tissues. 775 

With the development of mouse models, under- 776 
standing the genetics, pathology, and natural history of 777 
human benign and malignant peripheral nerve sheath 778 
tumors takes on new importance. It is only by accurate 779 
modeling of the human disease that progress can be 780 
made toward therapies that can slow or halt neurofi- 781 
bromagenesis and reduce the high risk of malignancy 782 
associated with NFl disease. 783 

732 In addition to peripheral  nerve  sheath tumors, 
733 individuals affected with NFl are at increased risk for 
734 an array of other tumors. Epidemiologically associated 
735 neoplasms include meduUoblastoma, pheochromocyto- 
736 ma, astrocytoma, and adenocarcinoma of the ampulla 
737 of Vater  (Ref   [143]   and  references  therein).'''^' 
738 Primarily children affected with NFl are at increased 
739 risk for optic pathway gliomas and brainstem gliomas, 
740 rhabdomyosarcomas,  and  malignant  myeloid  leuke- 
741 mias.''*''*''^"''*^' The NFl patients are also at increased 
742 risk for a second malignancy, some of which may be 
743 treatment-related."'*^''^°''^'' In different studies, 8%- 
744 21% of NFl patients with a first malignancy developed 
745 a second cancer, compared to a frequency of 4% in the 
746 general population.'"*^' Malignancy in NFl has been 
747 reviewed recently.''^'^^ 
748 Although  heterozygous   mutant  mice   {Nfl'^'~) 
749 develop tumors, they are not the characteristic peri- 
750 pheral nerve sheath tumors characteristic of the human 
751 disease."^^-'^^'  The  A^fi-deficient  mice   {Nfr'') 
752 die in utero from cardiac defects. Mice chimeric for 
753 {Nf}-'-) and (Nfl*'-^) cells were able to develop many 
754 microscopic  plexiform   neurofibromas,   but  dermal 
755 tumors did not develop."^^' In addition, mice doubly 
756 heterozygous for mutations in Nfl and p53 developed 
757 MPNST that showed LOH at both tumor suppressor 
758 loci.''^*''^^' Recently, mice were constructed such that 
759 only  their  Schwann  cells   were  Nfl   deficient.''^*' 
760 Different tumor phenotypes were observed, depending 
761 on whether the A/jf7-deficient Schwann cells were in an 
762 animal with an Nfl^'" or an Nfl'^''^ constitutional 
763 genotype. In the Nfl'^'^ genetic background, plexiform 
764 neurofibromas composed of A/f7-deficient Schwann 
765 cells, and the fibroblasts and mast cells that normally 
766 occur in human neurofibromas, developed on periphe- 
767 ral nerves. In the Nfl*'^ genetic background, Nfl- 
768 deficient Schwann cells did not participate in neurofi- 
769 bromagenesis but did form relatively small hyperplastic 
770 lesions of the cranial nerves containing minimal mast 
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